

0040-4039(94)01648-8

Sequential Free Radical Synthesis of a Linear Triquinane Skeleton from an Acyclic Synthon

Radomir N. Saičić^{*}, Živorad Čeković Faculty of Chemistry, University of Belgrade, Studentski trg 16, POB 550, 11001 Belgrade, YU and ICTM Center for chemistry, Negoševa 12, 11000 Belgrade, YU

Abstract: Regio- and stereoselective synthesis of a linear triquinane derivative was accomplished by a sequential free radical reaction, starting from an acyclic precursor

Sequential free radical reactions offer a powerful method for the construction of complex polycyclic compounds¹. Due to the ease of a free radical cyclopentane ring closure, polyquinanes have attracted much interest as potential targets for free radical methodology². Existing synthetic approaches to triquinanes are based on tandem cyclizations, with formation of two new rings attached to a central cyclic unit already existing in the radical precursor³. Beckwith's studies showed that sequential cyclization of the simple open chain trienyl radical affords tricyclic products as a mixture of regio- and stereoisomers⁴.

Recently, we reported a free radical annulation reaction leading to 2-vinyl substituted cyclopentane derivatives, where addition/cyclization/\beta-elimination sequence proceeds through the intermediacy of a 5-phenylthio-3-pentenyl radical⁵. In addition to this sequence of radical reactions for cyclopentane ring annulation, 5-exo-dig hexynyl radical cyclization⁶ as well as 5-exo-trig cyclization of vinyl radicals⁷ are also well known reactions for cyclopentane ring closure. Extending the scope of our method to the synthesis of polycyclic molecules, we designed a system where the same reactive unit, (emphasized substructure in 6, Scheme 3), would be formed by two consecutive cyclizations, and further submitting to the already described reaction conditions eventually afford a tricyclic product⁸. From the retrosynthetic analysis of the linear triquinane skeleton (Scheme 1), it can be seen that starting from synthon 2 and applying the following radical cyclization/addition/cyclization/B-elimination, sequence of reactions: tandem

Scheme I

the target molecule could be prepared from the easily available acyclic synthon.

Here we report the first regio- and stereoselective formation of a linear triquinane framework by a sequential radical reaction of an open chain polyunsaturated radical. The acid 1 was prepared by two successive alkylations of phenylthioacetic acid dianion⁹ followed by TMS group cleavage, in 78% overall yield (Scheme 2). Standard reagents for conversion of acid 1 into the corresponding acyl chloride

(SOCl₂/DMF; (COCl)₂/DMF; $/-40^{\circ}$ C) were unsuccessful, and poor yields of thiohydroxamic ester **2b** were obtained. However, the thiohydroxamic ester **2a** was conveniently prepared by DCC method¹⁰ (56% yield after column chromatography purification). When **2a** was submitted to the free radical conditions (CH₂=CHCN (22 eq), AIBN, boiling toluene, 0.5^h), the unsaturated linear triquinane derivative **3** was obtained in 46% isolated yield (Scheme 3). The product was obtained as the inseparable mixture of two diastereoisomers in 2.2 : 1 ratio (determined by capillary GC and ¹³C analyses)¹¹. However, when the reaction sequence was performed with the precursor **2b** at lower temperature (benzene, 150W sunlamp, 70°C), the ratio of isomers was 3.7 : 1.

Several features of this sequential reaction are noteworthy. Cyclization of 4 proceeds regioselectively, although the sulphur-stabilized radical has the possibility of reversible or *endo* addition to the terminal (unactivated) alkyne¹². The rate constant for vinyl radical addition to thione group of thiohydroxamic esters is not known, (although 5-alkenylvinyl radicals undergo rapid cyclization, premature trapping of the intermediate 5 by the precursor is a possible side reaction), but our results show that under appropriate conditions vinyl radical intermediates are compatible with the Barton method of radical generation¹³. By the cyclization of vinyl radical 5 the 5-phenyl-thio-3-pentenyl type radical 6 is formed, which is known to undergo

Scheme 3

intermolecular addition to acrylonitrile and subsequent cyclization/ β -elimination reaction⁵, thus furnishing the linear triquinane structure 3¹⁴. The cyclization of 5 very likely gives rise to diastereoisomeric radicals 6, but β -elimination of 8 destroys the stereochemistry at the ring juncture, giving a mixture of only two isomers, the predominant one being tentatively assigned as the *exo*.

To summarize, regio- and stereoselective synthesis of a linear triquinane framework can be achieved from readily available acyclic precursor under free radical conditions. Investigations concerning the syntheses of more functionalized triquinane molecules by this method are in progress.

References and notes

- Curran, D.P. in: Comprehensive Organic Synthesis, Editors: B.Trost, I.Fleming, Pergamon Press 1991, Vol.IV, p.715
- 2. Jasperse, C.P.; Curran, D.P.; Fevig, T.L.: Chem. Rev. 91, 1237 (1991), and the references cited therein
- 3. a) Curran, D.P.; .Sisko, J.; Yeske, P.E.; Liu, H.: Pure and Appl. Chem. 65, 1153-1159 (1993)
- b) Curran, D.P.: Synlett 1991, 63-72
- 4. Beckwith, A.L.J.; Schiesser, C.H.: Tetrahedron 41, 3925-3941 (1985)
- 5. Saičić, R.N.; Čeković, Ž.: Tetrahedron 48, 8975-8992 (1992)
- 6.a) Stork, G.; Mook, R.: JACS 105, 3720-3722 (1983)
- b) Crandali, H.J.; Keyton, J.D.: Tetrahedron Letters 1969, 1653-1656
- 7. Stork, G.; Baine, N.H.: JACS 104, 2321-2323 (1982)
- For a related approach to diquinane synthesis see: Journet, M.; Malacria, M.: JOC 57, 3085-3093 (1992)
- 9. Grieco, P.A.; Wang, C.L.J.: JCS Chem. Communications 1975, 714-715
- 10. Barton, D.H.R.; Sas, W.: Tetrahedron 46, 3419-3430 (1990)
- Spectral data for 3: 13C(CDCl₃), major isomer: 149.533 (C), 143.736 (C), 121.659 (C), 49.466 (CH),
 - 47.526 (CH), 37.365 (CH₂), 34.01 (CH₂), 32.408 (CH),
 - 31.06 (CH₂), 29.26 (CH₂), 28.58 (CH₂), 28.296 (CH₂)
 - minor isomer: 147.691 (C), 144.612 (C), 123.154 (C), 52.546 (CH),
 - 47.187 (CH), 36.758 (CH₂), 34.092 (CH₂), 32.296 (CH),
 - 31.03 (CH₂), 29.26 (CH₂), 28.077 (CH₂), 27.571 (CH₂)

¹H NMR(CDCl₃), the mixture of isomers: 3.2 (m, 1H); 0.8-2.8 (m, 14H) IR: 2940, 2847, 2236, 1448, 746 MS(DCI/iso-butane): 174(9%, M+1), 173(73%, M⁺), 172(100%, M-1), 145(70%), 119(84%), 105(56%), 92(33%), 91(70%), 79(30%), 77(29%), 65(27%), 51(14%),

- 41(29%), 39(24%)
- 12. Choi, J.K. Hart, D.J.: Tetrahedron 41, 3959-3971 (1985)
- 13. Barton, D.H.R.; Crich, D.; Kretzschmar, G.: JCS Perk. Trans. 1, 1986, 39-53
- 14. Cyclizations of alkenyl radicals of type 7, where the olefinic bond lays within a ring are known to give *cis*-fused products: Beckwith, A.L.J.; Roberts, D.H.: JACS 108, 5893-5901 (1986)

(Received in UK 13 July 1994; revised 23 August 1994; accepted 26 August 1994)